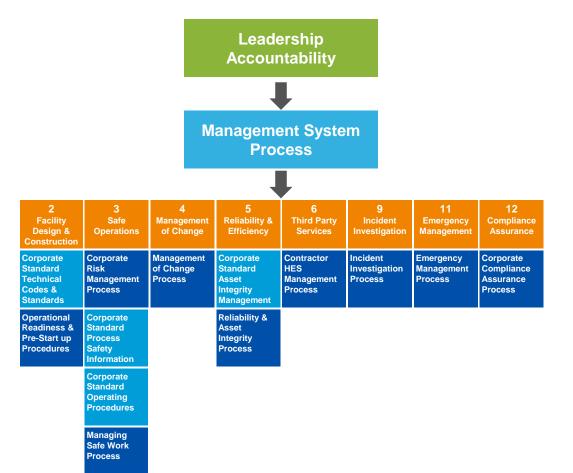
Process Safety Management in R&D



Jeff Hedges
Division Manager
Integrated Laboratory Technologies

Richmond CA August 21, 2013

ETC Laboratory Process Safety/Operational Excellence Overview

History

- Meeting some OE expectations, some OE expectations found Less Than Satisfactory based on Corp OE Audit 2004.
- Incidents and Injuries led to several safety stand downs and data driven PSM /OE improvement initiative in 2008

Current State

- Meeting PSM/OE expectations based on Corp OE Audit in 2009 & 2013 and annual ETC Self Assessments.
- Sustained decrease in incidents, injuries and serious near misses

Future State

 Continue to drive to Zero Incidents and Injuries

Training for

Competency

Process Safety

ETC Laboratories: Shaping an OE/IFO Culture

Leadership Accountability

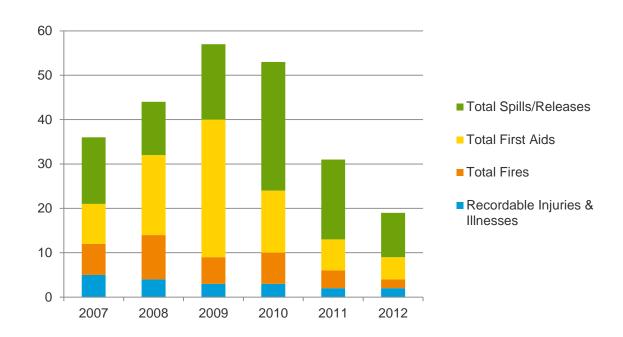
- Structured leader walkabouts
- Measuring and monitoring
- Daily safety meetings
- Near miss reporting
- OE Toolkits
- Site wide solutions
- II&R
- QA/QC

Process Safety Management

- Laboratory Design & operation
- MOC use and practices
- Procedure development & use
- Process Hazards Assessments
- Rre-startup safety reviews
- Drawing & P&ID maintenance

Operational Discipline

Zero


Achievable

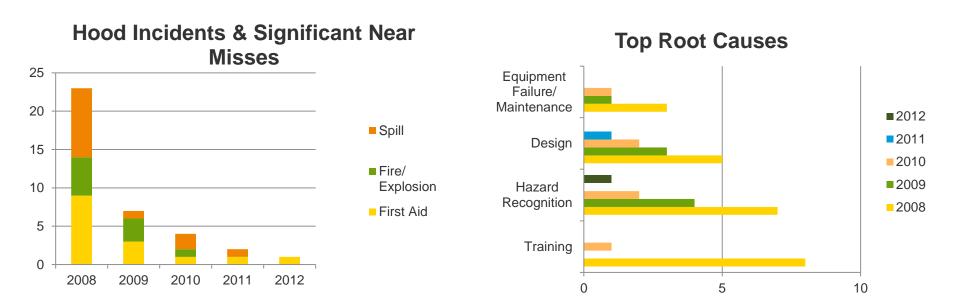
- Hazard Identification
- JSA use and fluency
- SWA use & reinforcement
- Daily safety meetings
- BBS
- SOP, SWP use & reinforcement
- Near miss/IF report sharing
 Incident investigation sharing

ETC Lab – Total Incidents & Significant Near Misses

Total Incidents & Significant Near Misses

Trends:

- Three straight years of incidents & significant near misses trending down.
- Spills/Releases continue to be the most common type of incident & near miss.
- Fires continuing to trend down over past three years.


Process Safety Management

- Laboratory Design & Operation
- MOC Use and Practices
- Procedure Development & Use
- Process Hazards Assessments
- Pre-startup Safety Reviews
- Drawing & P&ID Maintenance

ETC Labs – Hood Analysis Dramatically helped reduce Incidents! Kicked off Dec 2008

Hood Audit Team (HAT) Mission: Promoting Safe Fume Hood Practices and Reducing Incidents in Hoods by Auditing, Teaching, and Closing Gaps.

- Hazard Recognition has improved!
- All Lab personnel trained in 2009 on Hazards Identification Tool but need to continue efforts to improve fluency.
- Major effort to close gaps on procedures, design, and training over last 3 years is paying off !!!

Why are MOC and Pre-Startup Important?

- Incident: Reactor modifications lead to poor seal control and increased temps. After 3 months of failed attempts to operate including 1 spill/vapor release and 3 fires, the unit was shutdown.
- Findings: Modifications had been made without a MOC, without a reliable design and operating envelope for existing equipment (pump). Flow rates were greater than the equipment capacity (letdown system and product cooling).

- **Solution:** Conducted a MOC including a HazOp study. Redesigned pump, reactor and cooling system, revised operating envelope and safeguards. Within 5 weeks retrofits were installed, personnel were re-trained and the unit was re-started. No safety incidents or business interruption to date.
- ■The objective of MOC and Pre-Startup is to prevent Incidents, improve Reliability and improve Efficiency by ensuring that unacceptable risks are not introduced into our businesses

"There is always time to do it right"

Purpose of MOC and Pre-Startup Procedures

- Systematically manage changes to equipment, facilities and operations
- Ensure changes are:
 - Evaluated for health and safety hazards, environmental impacts and mitigations
 - Reviewed and approved for installation/implementation by designated Subject Matter Experts (SMEs)
 - Communicated to ALL personnel impacted by the change
 - Adequately trained on
 - Approved for Startup
 - Updated in critical OE documentation such as Procedures, Drawings,
 Operating Envelopes, Maintenance & Inspection Records

Leadership Accountability

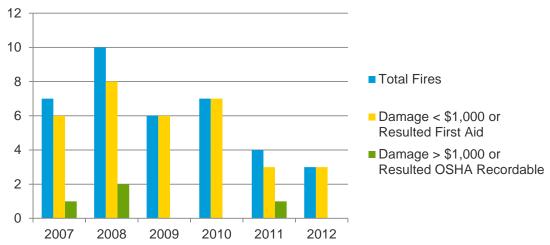
- Structured leader walkabouts
- Measuring and monitoring
- Daily safety meetings
- Near miss reporting
- OE Toolkits
- Site wide solutions
- Incident Investigation and Reporting (II&R)
- QA/QC

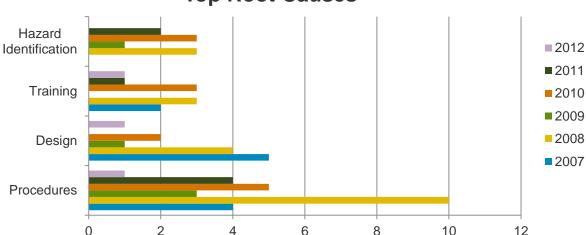
Incident Investigation & Reporting OE Process Current State in ETC Laboratories

- Rigorous and well established in lab operations since 2008.
- Use of Incident Tracking database to track and manage incident data and fulfill reporting requirements to Corp as well as outside agencies.
- Near Miss Safety Sharing System used for reporting Near Misses, Safety Sharing's and Spill Releases.
- Monthly review of incidents at all levels of leadership (team leaders to Department GM).
- Annual review of all incident data trends to determine how best to steer
- Investigations and Studies continue to daylight process safety improvement opportunities – Lessons Learned are shared broadly in monthly OE Toolkits
 - Example Heptane Spill:

Microsoft Office Word Document Incident Investigation

Investigation Process

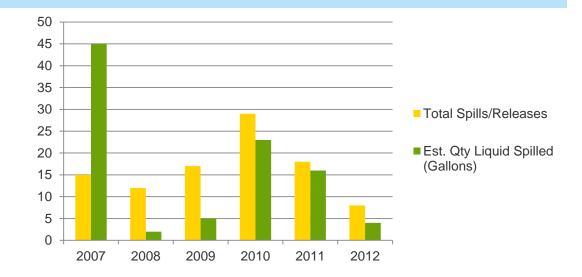

ETC Labs – Fire Incident Analysis

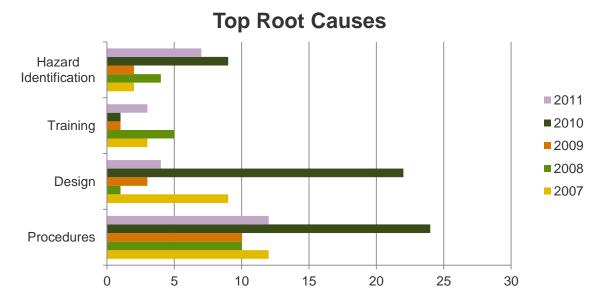

Trends:

- Our effort to close gaps on procedures, design, and training over last 3 years are helping to reduce fires.
- Lack of or inadequate procedures and design used to be a major root cause of fires.
- Designs have improved using reviews through MOC and PHAs.
- To help recognize hazards, all Lab personnel have been trained on Hazard Identification Tool.
- Oversight and Operational Discipline are the keys.

Fires and Damage

Top Root Causes



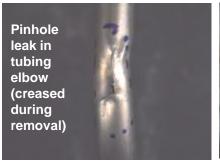

ETC Labs - Spills & Release Incident Analysis

Trends:

- Attention to secondary containment and use of Incidental Spill Plans has helped to reduce the severity of spills.
- Recognizing hazards remains an area of opportunity.

ETC Lab Incidents/Near Misses No Injuries but Unscheduled Research Unit Downtime

New Ionic Liquid Technology


- Pin hole leaks of ionic liquid/ hydrogen vapors due to corrosion
- Material was constructed of Monel, should have been Hastelloy

New Biofuels Technology

- Pin hole leak of hydrogen/hydrocarbon vapor due to corrosion
- Material was constructed of 321SS, should have been 316SS


New Hydroprocessing Technology

- Pin hole leak of VGO & deionized water due to corrosion
- Material was constructed of 347SS, should have been 316SS

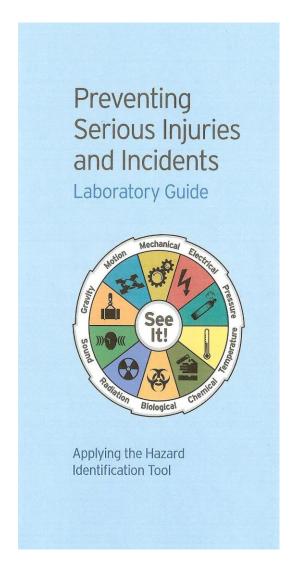
Operational Discipline

- Hazard Identification
- Job Safety Analysis use and fluency
- Stop Work Authority use & reinforcement
- Daily safety meetings
- Behavioral Based Safety
- SOP, SWP use & reinforcement
- Near miss/IF report sharing
- Incident investigation sharing

Stop-Work Authority

All Chevron Employees and contractors have the authority – and responsibility – to stop any unsafe condition.

Job Safety Analysis



OpCo: Unit/Group: Facility Location:	Name of Task: Type of Wo	1 1	Hierarchy of Controls Remove energy source Prevent the release of energy Aletagical Aletagical Aletagical
	Hazaro	ous Energies List and Examples (which apply to	Task)
Type	Example		,
Gravity	A taling object A collapsing roof	 A body (tem or person) tripping or faling Open excavation 	Other
Moton	☐ A person body postoring while won straining, bending, reaching) ☐ Vehicle, vessel or equipment moven	□ Wind	□ Other
Mechanical	☐ Rotating equipment ☐ Compressed springs ☐ Pinch/puncture points	☐ Unive bets ☐ Conveyors and motors	□ Other
Electrical	☐ Hower Ines ☐ Static charges ☐ Lighting	☐ Energized equipment ☐ Wring ☐ Betteries	□ Oher
Pressure	☐ Pressure piping ☐ Compressed cylinders ☐ Control lines ☐ Vesseb	☐ Tanks ☐ Hoses ☐ Pneumatic and hydraulic equipment	Other

CRTC-9538(1) (912)

Preventing Serious Injuries and Incidents Laboratory Guide

What We Have Learned From Our Journey?

- Using a data-driven approach to identify and prioritize gaps in operational discipline works.
- Setting expectations and measuring results for visible PSM/OE leadership works. What gets measured, gets done.
- Creating an open culture of sharing and reporting can move the OE needle in the right direction.
- Never let up on striving to get to the next level of excellence in PSM/OE.

CVX Global Laboratory: Shaping an OE/IFO Culture

Leadership Accountability

- Structured leader walkabouts
- Measuring and monitoring
- Daily safety meetings
- Near miss reporting
- OE Toolkits
- Site wide solutions
- II&R
- QA/QC

Process Safety Management

- Laboratory Design & operation
- MOC use and practices
- Procedure development & use
- Process Hazards Assessments
- Rre-startup safety reviews
- Drawing & P&ID maintenance

Operational Discipline

<u>Zero</u>

Achievable

- Hazard Identification
- JSA use and fluency
- SWA use & reinforcement
- Daily safety meetings
- BBS
- SOP, SWP use & reinforcement
- Near miss/IF report sharing
 Incident investigation sharing

OE/Safety Technical User Group (TUG)

- OE support for Global Labs
- Share OE processes & Safe Work Practices
- Sharing of Laboratory Incidents and lessons learned
- Global Lab OE Toolkits